Meeting Banner
Abstract #2214

Differentiation of glioblastoma and primary central nervous system lymphoma by using MR image-based texture features

Akira Kunimatsu1, Kouhei Kamiya2, Yasushi Watanabe2, Yuichi Suzuki2, Natsuko Kunimatsu3, Harushi Mori1, and Osamu Abe1

1Department of Radiology, The University of Tokyo, Tokyo, Japan, 2Department of Radiology, The University of Tokyo Hospital, Tokyo, Japan, 3Department of Radiology, International University of Health and Welfare Mita Hospital, Tokyo, Japan

We evaluated the feasibility of machine learning-based differentiation between glioblastoma and primary central nervous system lymphoma by using texture features of post-contrast MR images. Cross validation showed that more than 80% of teacher data were correctly assigned. Trial data comprised of atypical image variants were correctly assigned in up to 78.6% by the best classifiers.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords