Independent component analysis (ICA), as a data-driven signal decomposition method, has been widely used in fMRI. Sources of the measurement can be separated according to the rule of maximum independency, but it usually cannot naturally generate a source which is highly correlated with the signal we are interested in. To solve this problem, we propose a new method, prior knowledge oriented ICA (pICA), to drive ICA to a set of sources with the SOI among them. Experiments of simulation and fMRI show this new method has higher specificity and accuracy in identifying the SOI and its corresponding spatial map.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords