In order to further elucidate the biophysical origins of spatio-temporal correlation tensors and validate the possibility of detecting BOLD signals in white matter, we acquired resting-state fMRI in volunteers breathing alternately room air and CO2 enriched air to induce a hypercapnic-normoxic change in CBF and CBV. Our hypercapnic respiratory challenge experiments suggest that spatio-temporal correlations in white matter may be driven by local hemodynamic effects, consistent with BOLD effects instead of other potential mechanisms. Our results also imply and support our previous observation that BOLD signals in white matter can be reliably detected, and resting-state correlations between voxels are anisotropic.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords