Reliable metabolite mapping of the human brain using ultra-short TE and TR 1H FID-MRSI is possible at ultra-high fields. However, MRSI studies with high spatial resolutions and brain coverage suffer from long scan times. To make these studies clinically relevant, different acceleration methods are used at the price of losing SNR. The aim of this study is to implement and compare different in-plane acceleration methods: SENSE, GRAPPA and compressed sensing for high-resolution metabolite mapping of the human brain at 9.4T without lipid suppression.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords