Meeting Banner
Abstract #0038

Reducing false positives in tractography with microstructural and anatomical priors

Alessandro Daducci1,2,3, Muhamed Barakovic2, Gabriel Girard2, Maxime Descoteaux4,5, and Jean-Philippe Thiran2,3

1Computer Science department, University of Verona, Verona, Italy, 2Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland, 3Radiology department, University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland, 4Sherbrooke Connectivity Imaging Laboratory (SCIL), University of Sherbrooke, Sherbrooke, QC, Canada, 5Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Science, Sherbrooke Molecular Imaging Center, Sherbrooke, QC, Canada

Tractography has proven particularly effective for studying noninvasively the neuronal architecture of the brain but recent studies have showed that the high incidence of false positives can significantly bias any connectivity analysis. We present a novel processing framework that can dramatically reduce these false positives, i.e. improving specificity, without affecting the sensitivity, by considering two very basic observations about white-matter anatomy. Our results may have profound implications for the use of tractography to study brain connectivity.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords