Meeting Banner
Abstract #0134

Microscopic diffusion anisotropy reveals microstructural heterogeneity of malformations of cortical development associated with epilepsy: A b-tensor encoding study at 7T

Björn Lampinen1, Ariadni Zampeli2, Filip Szczepankiewicz3,4, Maria Compagno Strandberg5, Kristina Källén6, Isabella M Björkman-Burtscher4, and Markus Nilsson4

1Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund, Sweden, 2Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden, 3Random Walk Imaging AB, Lund, Sweden, 4Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden, 5Skane University Hospital, Department of Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden, 6Skane University Hospital, Department of Clinical Sciences Lund, AKVH-Neurology Helsingborg, Lund University, Lund, Sweden

Malformations of cortical development are macro- or microscopic abnormalities of the cerebral cortex. Here, we investigated such malformations associated with epilepsy using b-tensor encoding, which is a recently developed technique that permits estimation of microscopic anisotropy also in regions where diffusion is isotropic on the voxel level. Results show a large heterogeneity in microscopic anisotropy between lesions, which we hypothesize represents different levels of axonal content. The characteristics of some types of lesions depended strongly on whether they were associated to other lesions, which could be clinically helpful for indicating hidden sources of epileptic seizures.

This abstract and the presentation materials are available to members only; a login is required.

Join Here