Meeting Banner
Abstract #0257

The "Magic DIAMOND" method: probing brain microstructure by combining b-tensor encoding and advanced diffusion compartment imaging

Alexis Reymbaut1, Benoit Scherrer2, Guillaume Gilbert3, Filip Szczepankiewicz4,5, Markus Nilsson4, and Maxime Descoteaux1

1Université de Sherbrooke, Sherbrooke, QC, Canada, 2Dept. of Radiology, Boston Children’s Hospital, Boston, MA, United States, 3MR Clinical Science, Philips Healthcare Canada, Markham, ON, Canada, 4Department of Clinical Sciences, Lund, Lund University, Lund, Sweden, 5Random Walk Imaging AB, Lund, Sweden

Via q-trajectory encoding, b-tensors enable the disentanglement of isotropic and anisotropic diffusion components. Relevant metrics are usually extracted from data acquired with a combination of linear and spherical b-tensors with 1D parametric distributions of diffusivities. Independently, the DIAMOND model proposed an analytic result for a 6D parametric compartmental tensor distribution based on linearly acquired data. In this work, we extend DIAMOND’s analyticity to axisymmetric acquisitions. Evaluating this "Magic DIAMOND" approach on in vivo data, we show that it can tease apart isotropic diffusion and diffusivity compartments of crossing fascicles, hereby integrating specific compartments with intra-compartment diffusional variance.

This abstract and the presentation materials are available to members only; a login is required.

Join Here