Mutant IDH1 produces the oncometabolite 2HG, which drives tumorigenesis in low-grade gliomas. One potential therapeutic option for such gliomas is treatment with a PI3K/mTOR inhibitor. Using cell models genetically-engineered to express mutant IDH1, we observed that PI3K/mTOR inhibition induced a reduction in 2HG levels in treated cells and tumors, that was associated with reduced cell proliferation and enhanced animal survival. The drop in 2HG was due to a reduction in its synthesis from both glucose and glutamine. Our study identifies MRS-detectable metabolic alterations that could serve as indicators of response for mutant IDH1 glioma patients undergoing treatment with PI3K/mTOR inhibitors.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords