Meeting Banner
Abstract #1727

10µm isotropic voxels acquired with a CMOS-based planar microcoil at 14.1T: Preliminary results

Marlon Arturo Pérez Rodas1,2, Jonas Handwerker3,4, Hellmut Merkle1, Rolf Pohmann1, Jens Anders3,4, and Klaus Scheffler1,5

1High-Field MR Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 2Graduate Training Centre of Neuroscience, IMPRS for Cognitive and Systems Neuroscience, University of Tübingen, Tübingen, Germany, 3Institute of Microelectronics, University of Ulm, Ulm, Germany, 4Institute of Theory of Electrical Engineering, University of Stuttgart, Stuttgart, Germany, 5Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany

The quest for high resolution MR have push the technology to miniaturization. Thus, microcoils have been used for imaging with very high resolution. Here, we have designed and constructed a fully integrated CMOS NMR transceiver containing an on-chip microcoil, integrated amplifiers and demodulator for the high-frequency MR signal. In the present work, the initial microimaging results of this fully-integrated NMR transceiver in a 14.1 T animal scanner are presented. The on-chip microcoil allows imaging with a spatial resolution down to 10 µm with an SNR of 64 and with an improvement in SNR/volume ratio of 150 compared to a 10 mm surface coil.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords