Monitoring the dissolved xenon-129 signal in a central downstream location such as the left ventricle of the heart provides a convenient measure of the lung’s gas transport dynamics, and thereby of total lung function. To demonstrate the feasibility of this approach, we combined a rapid simultaneous gas-phase / dissolved-phase 1D-projection acquisition with regional gas-phase saturation to monitor the gas-transport dynamics of the lung as signal variations in the heart of a rat model of radiation-induced lung injury. Our measurements indicate that this method can identify the reductions in regional lung function associated with partial lung irradiation.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords