The temporal dynamics of 129Xe spectroscopy were examined by collecting FIDs during inhalation, breath-hold, and exhalation. These FIDs were fit to a Voigt model to extract four spectral parameters (amplitude, chemical shift, linewidth, and phase) for the airspace, barrier, and RBC 129Xe resonances. The RBC resonance parameters exhibited oscillations at the cardiac frequency which were quantified by peak-to-peak amplitudes. IPF subjects exhibited larger signal amplitude, chemical shift, and phase oscillations than healthy or PAH subjects. This indicates that 129Xe transfer spectroscopy is differentially affected by cardiopulmonary dynamics such that the causes of gas exchange impairment can be distinguished.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords