Scaled subprofile model of principal component analysis (SSM-PCA) is a multivariate statistical method, widely used in positron emission tomography (PET). Recently, SSM-PCA has been applied to resting-state functional MRI (RS-fMRI). However, the intra- and inter-scanner reliability of SSM-PCA in RS-fMRI is not investigated systematically yet. Results from eyes-open (EO) and eyes-closed (EC) dataset demonstrate that both the intra- and inter-scanner reliability is excellent for EO and EC related covariance pattern (EOEC-pattern) and fair to good for EOEC-pattern’s expression. Moreover, SSM-PCA and conventional T-test are complementary for neuroimaging researches. This study illustrates the great potential of SSM-PCA for further applications in RS-fMRI.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords