Meeting Banner
Abstract #0143

Denoising of Z-spectra for stable CEST MRI using principal component analysis

Johannes Breitling1,2,3, Anagha Deshmane4, Steffen Goerke1, Kai Herz4, Mark E. Ladd1,2,5, Klaus Scheffler4,6, Peter Bachert1,2, and Moritz Zaiss4

1Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany, 2Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany, 3Max Max Planck Institute for Nuclear Physics, Heidelberg, Germany, 4High-field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany, 5Faculty of Medicine, University of Heidelberg, Heidelberg, Germany, 6Department of Biomedical Magnetic Resonance, Eberhard-Karls University Tübingen, Tübingen, Germany

Chemical exchange saturation transfer (CEST) MRI allows for the indirect detection of low-concentration biomolecules by their saturation transfer to the abundant water pool. However, reliable quantification of CEST effects remains challenging and requires a high image signal-to-noise ratio. In this study, we show that principle component analysis can provide a denoising capability which is comparable or better than 6-fold averaging. Principle component analysis allows identifying similarities across all noisy Z-spectra, and thus, extracting the relevant information. The resulting denoised Z-spectra provide a more stable basis for quantification of selective CEST effects, without requiring additional measurements.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords