Diffusion inside axons is restricted and thus non-Gaussian, with diffusion MRI (dMRI) signal strongly sensitive to the shape of the confining axon. This sensitivity is confounded by the coarse-graining of the diameter/shape variation along the fiber during the diffusion time. Here, we analytically relate dMRI metrics to the axonal shape, and validate our theory using 3d Monte-Carlo simulations in beaded cylinders and realistic axons reconstructed from electron microscopy images of the mouse brain white matter. Our simulation results show that the intra-axonal space has a non-trivial kurtosis transverse to axons. Its value is different from that in a perfectly straight cylinder, and needs to be considered in axonal diameter measurements (e.g., spinal cord, strong gradients, intra-axonal metabolites).
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords