It can be argued that the most significant technical impediment for wider clinical adoption of fully-quantitative cardiac perfusion MRI is the lack of a fully-automatic post-processing workflow across all scanner platforms. In this work, we present an initial proof-of-concept based on a deep-learning approach for quantification of myocardial blood flow that eliminates the need for motion correction, hence enabling a rapid and platform-independent post-processing framework. This is achieved by optimizing/training a cascade of deep convolutional neural networks to learn the common spatio-temporal features in a dynamic perfusion image series and use it to jointly detect the myocardial contours across all dynamic frames in the dataset.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords