Model-based accelerated imaging techniques enable high scan time reductions while maintaining high image quality. These techniques rely on the ability to accurately estimate the imaging model. This model can be extended to include information beyond physical limits, such as high-resolution phase information to promote conjugate symmetry or information of voxels without signal for a stronger image prior. Thus, we propose a deep learning approach to estimate the imaging model with latent coil maps. Furthermore, we jointly train this latent map estimator with a deep-learning-based reconstruction using adversarial loss, and we demonstrate the effectiveness of this approach in volumetric knee datasets.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords