Meeting Banner
Abstract #1255

Multi-Regularization Reconstruction of One-Dimensional $$$ T_2$$$ Distributions

Chuan Bi1, Miao-Jung Yvonne Ou1, Wenshu Qian2, You Zhuo2, and Richard G Spencer2

1Department of Mathematical Sciences, Uiversity of Delaware, Newark, DE, United States, 2National Institute on Aging, National Institutes of Health, Baltimore, MD, United States

Tikhonov regularization and related methods are widely used in recovering relaxation time distributions in magnetic resonance relaxometry. Regularization optimization methods such as the L-curve and generalized cross-validation (GCV) identify a single optimized solution as the best approximation to the underlying distribution. In contrast, we propose a new reconstruction method, Multi-Reg, incorporating a range of regularized solutions. Multi-Reg is based on a dictionary of noise-corrupted regularized reconstructions of distribution basis functions. We demonstrate that Multi-Reg can out-perform L-curve or GCV analyses in simulation analyses of Gaussian distribution components, and with experimental results on mouse spinal cord and human muscle.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords