Meeting Banner
Abstract #1622

A quality control system for automated prostate segmentation on T2-weighted MRI

Mohammed R. S. Sunoqrot1, Kirsten M. Seln├Žs1,2, Olmo Zavala-Romero3, Radka Stoyanova3, Tone F. Bathen1, and Mattijs Elschot1,2

1Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technolog, Trondheim, Norway, 2Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim, Norway, 3Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, United States

Computer-aided detection and diagnosis (CAD) systems have the potential to improve robustness and efficiency compared to traditional radiological reading of MRI in prostate cancer. Fully automated segmentation of the prostate is a crucial step of CAD. With the advent of the deep learning-based (DL) methods in medical imaging, series of networks have been developed to segment the prostate. Automated detection of poorly segmented cases would therefore be a useful supplement. Therefore, we proposed a quality control (QC) system to detect the cases that will result in poor prostate segmentation. The performance results shows that the proposed QC system is promising.

This abstract and the presentation materials are available to members only; a login is required.

Join Here