To perform static cardiac imaging, manual inspection of CINE images is currently necessary to detect a quiescent window within the cardiac cycle. We propose an automated system using two chained Deep Neural Networks to determine localized end-systolic and end-diastolic resting phases. The first network finds a region of interest (e.g. RCA, right or left atrium) and the second determines a quantitative motion curve for this region. Training and evaluation was performed on data from volunteers and patients acquired on different scanners and field strengths and a comparison to manually annotated resting phases showed accuracy in the range of 35ms.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords