Meeting Banner
Abstract #2155

Analysis of Sampling Strategies for Convolutional Neural Network Based Cardiac Magnetic Resonance Image Reconstruction

Junyu Wang1, Yang Yang2, Xue Feng1, Daniel S. Weller3, and Michael Salerno1,2,4

1Biomedical Engineering, University of Virginia, Charlottesville, VA, United States, 2Medicine, University of Virginia, Charlottesville, VA, United States, 3Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, United States, 4Radiology, University of Virginia, Charlottesville, VA, United States

Recently, convolutional neural network (CNN) based fast cardiac image reconstruction techniques have shown the potential to produce rapid, high quality reconstructions from under-sampled data. However, the relationship between the k-space sampling strategy, image content, training process and reconstruction performance has not been extensively studied. To address this, our study trained different CNN based cardiac image reconstruction models for different image content and various sampling patterns. We showed that better reconstruction results were achieved when using mixed image content as training data and distributing more energy at the center of k-space. Radial acquisition showed the lowest RMSE suggesting potential improvement of CNN performance with non-Cartesian acquisition.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords