In short echo time spectroscopy sequences macromolecular signals may strongly influence the quantification of metabolite spectra they underlay. In this work we present a method for simulating a MM basis set that is tailored toward chosen sequences and sequence parameters with the aim to improve the accuracy of metabolite measurements in vivo. We show that utilizing a simulated macromolecule basis set while considering the relaxation behavior of individual macromolecular resonances can produce metabolite quantification results of similar quality to that of a dedicatedly measured MM basis set when applied to the same spectra of interest.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords