Resting-state fMRI assessed with graph theoretical modeling provides a noninvasive approach for measuring brain network topological organization properties, yet their reproducibility remains uncertain. Here we examined the test-retest reliability of seven brain small-world network metrics from well-controlled resting-state scans of 16 healthy adults using different data processing and modeling strategies. Among the seven network metrics, Lambda exhibited highest reliability whereas Sigma performed the worst. Weighted network metrics provided better reliability than binary network metrics, while reliability from the AAL90 atlas outweighed those from the Power264 parcellation. Global signal regression had no consistent effect on reliability of these network metrics.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords