Respiration-induced B0 fluctuations are significantly greater in the cervical spinal cord than in the brain at 7T, increasing k-space phase inconsistencies and necessitating a separate evaluation of autocalibration scan (ACS) methods for accelerated EPI. We tested four ACS methods (single-shot EPI, segmented EPI, FLEET, and GRE) under three physiological conditions (end-expiration breath-hold, free-breathing, and intentional swallowing). GRE and single-shot EPI ACS methods, which are robust to respiration-induced phase errors between k-space segments, produce images with fewer and less severe artifacts than either FLEET or conventionally segmented EPI ACS methods for accelerated EPI of the cervical spinal cord at 7T.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords