Meeting Banner
Abstract #3551

Microstructural  Parameter Estimation of Skeletal Muscle Using Random Forest Model of dMRI

Noel M. Naughton1, Nicolas R. Gallo2, Aaron T. Anderson3,4, and John J. Georgiadis1,2

1Mechanical Science and Engineering, University of Illinois at Urbana Champaign, Urbana, IL, United States, 2Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, United States, 3Beckman Institute for Advanced Science and Technology, Univeristy of Illinois at Urbana Champaign, Urbana, IL, United States, 4Radiology, Carle Foundation Hospital, Urbana, IL, United States

Results are presented for a random forest model to estimate skeletal muscle microstructure parameters from dMRI data. The model exhibits the ability to estimate microstructural parameters from both numerically simulated and experimentally acquired dMRI data suggesting that random forests, and machine learning more generally, may be a useful tool in dMRI microstructure estimation of skeletal muscle.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords