Proton resonance frequency thermometry is useful to estimate temperature change that is proportional to the resonance frequency change. In this study, we propose a dual-echo bSSFP thermometry method that generates a high intensity signal and linear phase to the frequency shift. Off-centered acquisition in the balanced steady-state free precession creates an imperfect linear phase with respect to the frequency shift. The dual-echo acquisition method compensates for the phase nonlinearity and generates phase information that is linearly proportional to the frequency shift. This phase linearization makes it possible to accurately measure the proton resonance frequency shift caused by temperature change.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords