The brain is a dynamic biosystem where the regions communicate with each other in a time-varying and adaptive way. Recently, abnormally varied brain statuses in brain diseases have been demonstrated with dynamic functional connectivity (FC) and a newly developed technique, high-order FC, which measures synchronization of the FC dynamics, providing a valuable way to characterize high-level brain function. However, there is a lack of method in quantification of local synchronization of the FC dynamics, another important facet of the high-level brain functional organization that could underpin complex regional brain activities. To this end, we propose a new method called high-order regional homogeneity (high-order ReHo) to evaluate such complex organizations of the local FC dynamics. We demonstrated that such a metric is more sensitive compared to the traditional low-order ReHo approach in individualized depression classification.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords