Meeting Banner
Abstract #4133

Monitoring of Pulmonary Function in Real-time with 1D Hyperpolarized Xenon-129 MRI

Kai Ruppert1, Yi Xin1, Faraz Amzajerdian1, Hooman Hamedani1, Luis Loza1, Tahmina Achekzai1, Ryan J. Baron1, Ian F. Duncan1, Harrilla Profka1, Sarmad Siddiqui1, Mehrdad Pourfathi1, Federico Sertic1, Maurizio F. Cereda2, and Rahim R. Rizi1

1Radiology, University of Pennsylvania, Philadelphia, PA, United States, 2Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, United States

Data sampling for pulmonary function measurements using hyperpolarized gas MRI typically lasts for several seconds due to the time requirements for spatial signal encoding. Consequently, highly-dynamic processes are largely invisible to existing lung-imaging techniques. In an initial attempt to observe pulmonary function in real time, we traded spatial resolution for a high temporal resolution of 10 ms by limiting spatial information to 1D projection acquisitions. We tested the technique in a rabbit model by observing pulmonary signal oscillations throughout the lung and by detecting alveolar collapse during expiration at high PEEP in acid-induced acute lung injury.

This abstract and the presentation materials are available to members only; a login is required.

Join Here