Hyperpolarized (HP) [13C]bicarbonate MR imaging can map pH in vivo, but images generally suffer from low CO2 signal-to-noise ratio (SNR). However, rapid bicarbonate-CO2 chemical exchange can increase CO2 SNR via exchange-mediated polarization transfer. We exploit this phenomenon for HP [13C]bicarbonate imaging to boost CO2 SNR by 2.2-fold at pH 7.6, where CO2 SNR is lowest in the physiologic range, by acquiring and summing multiple transients. Tip angles and delays are chosen using a priori knowledge of exchange rate to increase SNR while mitigating pH error. This approach can potentially improve imaging SNR in vivo for studying extracellular acidosis in cancer.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords