Meeting Banner
Abstract #4430

Correction of Out-of-FOV Motion Artifacts using Convolutional Neural Network Derived Prior Image

Chengyan Wang1, Yuan Wu1, Yucheng Liang2, Danni Yang2, Siwei Zhao1, and Yiping P. Du1

1Institute for Medical Imaging Technology (IMIT), School of Biomedical Engineering, Shanghai Jiao Tong university, Shanghai, China, 2Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States

This study presented a new motion correction algorithm with the incorporation of convolutional neural network (CNN) derived prior image to solve the out-of-FOV motion problem. A modified U-net network was developed by introducing motion parameters into the loss function. We assessed the performance of the proposed CNN-based algorithm on 1113 MPRAGE images with simulated oscillating and sudden motion trajectories. Results show that the proposed algorithm outperforms conventional TV-based algorithm with lower NMSE and higher SSIM. Besides, robust reconstruction was achieved with even 20% data missed due to the out-of-FOV motion.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords