Meeting Banner
Abstract #4536

Optimised T2 Preparation for Brain Imaging: Application to Compressed Sensing 3D T2 Mapping

Emilie Mussard1,2,3, Tom Hilbert1,2,3, Christoph Forman4, Ruud B. van Heeswijk2,5, Reto Meuli2, Jean-Philippe Thiran3, and Tobias Kober1,2,3

1Advanced Clinical Imaging Technology, Siemens Healthcare AG, Lausanne, Switzerland, 2Department of Radiology, University Hospital (CHUV), Lausanne, Switzerland, 3LTS5, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, 4Magnetic Resonance, Siemens Healthcare GmbH, Erlangen, Germany, 5Center for BioMedical Imaging (CIBM), Lausanne and Geneva, Switzerland

T2-mapping is becoming an important tool to detect pathological tissue; however, achieving high isotropic resolution is challenging. This work optimises a T2-prepared 3D compressed-sensing acquisition. Two T2-preparation modules (modified-BIR4, hyperbolic secant) and three Cartesian sampling trajectories (spiral, radial, VC-spiral) are explored. The NIST-ISMRM phantom and three in vivo subjects were scanned to test T2 accuracy and homogeneity. Results show more homogeneous and accurate T2 values with BIR4, due to a decreased sensitivity to B1. In vivo data showed more homogeneous T2 in WM using a radial trajectory. Based on these results, we propose an optimised 3D T2-mapping protocol of 9:48min.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords