Deep learning has recently been applied to image reconstruction from undersampled k-space data with success. Most existing works require both undersampled data and ground truth image as the training pair. It is not practical to obtain a large number of ground truth images for training in some MR applications. Here a novel deep learning network is studied for image reconstruction using only undersampled data for training. Experiment results demonstrate the feasibility of training without the ground truth images for image reconstruction.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords