Meeting Banner
Abstract #4676

Super-resolution based on the Signal Extrapolation in Phase scrambling Fourier Transform Imaging using Deep Convolutional Neural Network

Satoshi ITO1

1Utsunomiya University, Utsunomiya, Japan

The signal obtained in phase scrambling Fourier transform imaging can be extrapolated beyond sampling length after data acquisition like Half-phase encoding method. To realize the method for phase varied images, precise phase distribution map is required. In this paper, a new post-processing super resolution in PSFT imaging is proposed in which deep convolution neural network (CNN) is used and phase map is not required. Simulation and experimental results showed that spatial resolution was fairly improved with signal extrapolation and the improvement of spatial resolution is proportional to the strength of phase scrambling coefficient.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords