Meeting Banner
Abstract #4677

Semi-Classical Signal Analysis Method with Soft-Thresholding for MRS denoising

Abderrazak Chahid1, Sourav Bhaduri2, Malik Wali1, Eric Achten3, Hacene Serrai 2,4, and Taous-Meriem Laleg-Kirati1

1Computer, Electrical and Mathematical Science and Engineering (CEMSE) division, King Abdullah University of Sciences and Technology (KAUST), Thuwal, Saudi Arabia, 2Department of Radiology and Nuclear Medicine, University of Ghent, Gent, Belgium, 3Department of Radiology, Department of Radiology and Nuclear Medicine, University of Ghent, Gent, Belgium, 4Robarts Research Institute, University of Western Ontario, London, ON, ON, Canada

A Semi-Classical Signal Analysis (SCSA) method with soft thresholding is proposed for MRSI denoising. The SCSA takes advantage of the pulse-shaped MRS spectrum to decompose both real and imaginary parts, into localized basis given by squared eigenfunctions of the Schrödinger operator. An optimization-based soft-threshold is provided to find optimal semi-classical parameters, for both the real and imaginary parts of the MRS signal. The optimal SCSA parameters discard the eigenfunctions representing noise from the noisy spectrum, and conserve the eigenfunctions representing the useful information. The obtained in-vivo results show the efficiency of the SCSA with soft thresholding in removing noise and conserving metabolite signals.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords