Meeting Banner
Abstract #5061

To evaluate the effect of different initial guess selection approaches on quantitative analysis of DCE-MRI data of brain tumor patients

Dinil Sasi1, Sameer Manickam1,2, Rakshit Dadarwal1, Ayan Debnath1,3, Snekha Thakran1, Rakesh K Gupta4, and Anup Singh1,5

1Indian Institute of Technology Delhi, New Delhi, India, 2KTH Royal Institute of Technology, Stockholm, Sweden, 3University of Pennsylvania, Philadelphia, PA, United States, 4Fortis memorial research institute, Gurugram, India, 5AIIMS, New Delhi, India

Quantitative analysis of dynamic-contrast-enhanced(DCE)-MRI data using various tracer kinetic models is widely used in cancer diagnosis and follow-up. In general, voxelwise model fitting using nonlinear-least-square method requires a long processing time depending upon image-resolution, data noise, choice of initial guess, model type and computer-platform. In this study, we proposed a tissue specific initial guess selection approach, for the voxel wise fitting using nonlinear–least-square method, which substantially reduced computation-time without compromising accuracy of parameters compared to regular global initial guess approach. It also performed better than recently proposed Image-Downsampling-Expedited-Adaptive-Least-squares fitting approach. Parallel-processing was also implemented to further reduce the time

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords