Meeting Banner
Abstract #0160

Magnetic properties of dopaminergic neurons in human substantia nigra quantified with MR microscopy

Malte Brammerloh1,2, Evgeniya Kirilina1,3, Renat Sibgatulin4, Karl-Heinz Herrmann4, Tilo Reinert1, Carsten Jäger1,5, Primož Pelicon6, Primož Vavpetič6, Kerrin J. Pine1, Andreas Deistung7, Markus Morawski5, Jürgen R. Reichenbach4, and Nikolaus Weiskopf1,2
1Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany, 2Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany, 3Center for Cognitive Neuroscience Berlin, Freie Universität Berlin, Berlin, Germany, 4Medical Physics Group, University Hospital Jena, Jena, Germany, 5Paul Flechsig Institute of Brain Research, Leipzig, Germany, 6Microanalytical Center, Department for Low and Medium Energy Physics, Jožef Stefan Institute, Ljubljana, Slovenia, 7Department of Radiology, University Hospital Halle, Halle, Germany

MRI-based quantification of dopaminergic neurons (DN) and their neuromelanin (NM) in substantia nigra (SN) has great potential to serve as a specific biomarker for neurodegeneration in movement disorders. We used 22-µm-resolution post mortem MR microscopy combined with ion beam microscopy to characterize the magnetic properties of DN. MR microscopy visualized individual DN and provided 3D cellular maps of the entire SN. Static dephasing was determined as main effective transverse relaxation mechanism of DN. We characterized the susceptibility of iron in DN and estimated that the contribution of DN to R2* and QSM may also be detected with in vivo MRI.

This abstract and the presentation materials are available to members only; a login is required.

Join Here