129Xe MRI ventilation images consist of embedded texture features that help explain abnormal ventilation heterogeneity. We postulated that such texture features may help predict severe asthma patient response to anti-IL-5 therapies. Therefore, we employed supervised shallow learning techniques to identify specific 129Xe MRI features that help predict anti-IL-5 responders. Texture analysis yielded features that were superior to clinical measurements in identifying severe asthma patients that responded to anti-IL-5 therapy after 28 days. These promising results suggest that texture analysis may help predict asthmatics more likely to respond, before treatment is initiated.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords