Adiabatic pulses are commonly used in clinical MRI due to their insensitivity to B1 inhomogeneity and uniform flip angle over a selected bandwidth. When applied to white matter, they are generally assumed to saturate the magnetization of the non-aqueous protons in myelin. We performed adiabatic inversion recovery experiments on bovine brain in vitro using a solid state NMR spectrometer to directly observe the effects of adiabatic inversions on the non-aqueous signal. Substantial non-aqueous magnetization remains after typical adiabatic pulses. The state of the non-aqueous magnetization seriously impacts measurement of T1, yielding values dependent on the form of inversion pulse used.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords