Hyperpolarized 13C-Magnetic resonance spectroscopy (13C-MRS) and NADH fluorescence lifetime imaging (FLIM) have evolved as methods to detect metabolic shifts in aerobic glycolysis and oxidative phosphorylation which are associated with metastatic potential in cancer metabolism. This study set out to investigate the differences in cancer metabolism between murine non-metastatic, metastatic-dormant, and highly metastatic breast cancer cell lines. FLIM analysis revealed no differences in free and bound NADH between cell lines, indicative of uniform ATP production through oxidative phosphorylation; however, hyperpolarized 13C-MRS measurements detected an increase in lactate production, or aerobic glycolysis, which was associated with greater breast cancer metastatic potential.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords