Meeting Banner
Abstract #0889

Accelerated T2 Mapping by Integrating Two-Stage Learning with Sparse Modeling

Ziyu Meng1,2, Yudu Li2,3, Rong Guo2,3, Yibo Zhao2,3, Tianyao Wang4, Fanyang Yu2,5, Brad Sutton2,5, Yao Li1, and Zhi-Pei Liang2,3
1Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China, 2Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States, 3Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States, 4Department of Radiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China, 5Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States

We propose a new method to learn the multi-TE image priors for accelerated T2 mapping. The proposed method has the following key features: a) fully leveraging the Human Connectome Project (HCP) database to learn T2-weighted image priors for a single TE, b) transferring the learned single-TE T2-weighted image priors to multi-TE via deep histogram mapping, c) reducing the learning complexity using a tissue-based training strategy, and d) recovering subject-dependent novel features using sparse modeling. The proposed method has been validated using experimental data, producing very encouraging results.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords