Meeting Banner
Abstract #0900

Multi-tissue constrained spherical deconvolution in a murine brain

Steven Jillings1, Jan Morez2, Nicholas Vidas-Guscic3, Johan Van Audekerke3, Floris Wuyts1, Marleen Verhoye3, Jan Sijbers2, and Ben Jeurissen2
1Lab for Equilibrium Investigations and Aerospace, Dept. of Physics, University of Antwerp, Antwerp, Belgium, 2imec-Vision Lab, Dept. of Physics, University of Antwerp, Antwerp, Belgium, 3Bio Imaging Lab, Dept. of Biomedical Sciences, University of Antwerp, Antwerp, Belgium

Multi-tissue constrained spherical deconvolution (MT-CSD) leverages the unique b-value dependency of each brain tissue type to estimate the full white matter (WM) fiber orientation density function (fODF) as well as the apparent densities of gray matter (GM) and cerebrospinal fluid (CSF), directly from multi-shell diffusion MRI (dMRI) data. Currently, its adoption is focussed almost entirely on imaging of the human brain. In this work, we demonstrate that the sequence, the pipeline and the advantages that are now well established for human brains, can be transferred to murine brains, bringing the technique into the preclinical realm.

This abstract and the presentation materials are available to 2020 meeting attendees and eLibrary customers only; a login is required.

Join Here