Meeting Banner
Abstract #0987

Σ-net: Ensembled Iterative Deep Neural Networks for Accelerated Parallel MR Image Reconstruction

Kerstin Hammernik1, Jo Schlemper1,2, Chen Qin1, Jinming Duan3, Gavin Seegoolam1, Cheng Ouyang1, Ronald M Summers4, and Daniel Rueckert1
1Department of Computing, Imperial College London, London, United Kingdom, 2Hyperfine Research Inc., Guilford, CT, United States, 3School of Computer Science, University of Birmingham, Birmingham, United Kingdom, 4NIH Clinical Center, Bethesda, MD, United States

We propose an ensembled Ʃ-net for fast parallel MR image reconstruction, including parallel coil networks, which perform implicit coil weighting, and sensitivity networks, involving explicit sensitivity maps. The networks in Ʃ-net are trained with various ways of data consistency, i.e., gradient descent, proximal mapping, and variable splitting, and with a semi-supervised finetuning scheme to adapt to the k-space data at test time. We achieved robust and high SSIM scores by ensembling all models to a Ʃ-net. At the date of submission, Ʃ-net is the leading entry of the public fastMRI multicoil leaderboard.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords