Magnetisation transfer ratio (MTR) is a popular MR-modality for the identification of brain anomalies in multiple sclerosis due to its sensitivity to myelin changes. It however requires dedicated sequences with long acquisition times, which make its applicability in clinics less feasible. In this work, deep learning U-net architectures have been used to extract MTR information directly from routine qualitative images, bypassing the need for specialised acquisitions. Results show strong correlation with MTR and agreement between regional distributions in normal appearing tissues, both in healthy controls and multiple sclerosis patients.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords