Deep learning reconstruction (DLR) is a novel denoising processing. We applied DLR to a compressed sensing (CS) sequence of orbital thin-slice fat-suppressed T2-weighted imaging with one number of excitation (NEX). A CS sequence with one NEX without DLR and a conventional sequence with two NEX were also obtained to evaluate the denoising performance. Combined usage of DLR with CS reduced image noise and improved the image quality of the optic nerves and the medial rectus muscles, while achieving shorter acquisition time, compared with the CS and the conventional sequences without DLR.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords