Meeting Banner
Abstract #2181

Realistic Simulation of High-Performance Low Field Cardiac Cine Imaging

Xitong Wang1, Namgyun Lee2, Adrienne E. Campbell-Washburn3, and Krishna S. Nayak1
1Electrical Engineering, University of Southern California, Los Angeles, CA, United States, 2Biomedical Engineering, University of Southern California, Los Angeles, CA, United States, 3National Heart, Lung, and Blood Insititute, National Institues of Health, Bethesda, MD, United States

There is renewed interest in high-performance low field imaging, especially for applications that are limited by susceptibility and SAR, such as cardiac CINE bSSFP imaging. Here, we demonstrate a framework for realistic simulation of 3D CINE bSSFP cardiac imaging at various field strengths. This is benchmarked against in-vivo data acquired on a high-performance 0.55 Tesla MRI. We utilize the XCAT phantom, 3D stack of spiral sampling, and realistic noise. This setup can be used to predict minimum field strength requirements and to test data sampling and reconstruction techniques.

This abstract and the presentation materials are available to 2020 meeting attendees and eLibrary customers only; a login is required.

Join Here