Meeting Banner
Abstract #3348

MR compatible 4D Ultrasound based validation of respiratory motion compensation strategies

Zachary Miller1, James Holmes1, Sydney Jupitz1, Ty Cashen2, Frank Ong3, Michael Lustig4, Peder Larson5, Bryan Bednarz6, and Kevin Johnson1
1Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States, 2GE Healthcare, University of Wisconsin-Madison, Madison, WI, United States, 3Department of Electrical Engineering, Stanford University, Stanford, CA, United States, 4Department of Electrical Engineering, University of California-Berkely, Berkeley, CA, United States, 5Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States, 6Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI, United States

Imaging during respiratory and cardiac motion remains a major challenge for body and cardiac MR. A number of motion correction approaches have been proposed to address this challenge including use of external gating signals, navigator acquisitions, and motion estimation from the image data itself. However, the accuracy of these motion estimation techniques has not been validated in-vivo. In this work, we use a recently developed MR compatible 4D ultrasound probe combined with feature tracking to evaluate the performance of MR based navigation algorithms in the setting of free-breathing 3D pulmonary imaging.

This abstract and the presentation materials are available to 2020 meeting attendees and eLibrary customers only; a login is required.

Join Here