We propose a strategy based on residual U-Net to reconstruct MR images from undersampled multichannel data by considering both k-space and image space. Our method first imputes the missing data points in k-space by utilizing the intrinsic relationships among channels. Then, the image reconstructed from the imputed k-space data is fed to another network for spatial detail refinement. Our method does not necessarily require auto-calibration signal (ACS) and is hence less susceptible to motion-induced inconsistency between the ACS and the undersampled data. Comprehensive evaluation indicates that our method yields images with superior perceptual details.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords