Meeting Banner
Abstract #3439

MR Image Reconstruction using GRAPPA with Total Generalized Variation

Rida Zainab1, Muhammad Haseeb Hassan1, Omair Inam1, Ibtisam Aslam1,2, and Hammad Omer1
1Department of Electrical and Computer Engineering, COMSATS University Islamabad, Islamabad, Pakistan, 2Department of Radiology and Medical Informatics, Hospital University of Geneva, Geneva, Switzerland

GRAPPA reconstructed images may exhibit noise modulated by the receiver coil sensitivities. Total variation (TV) regularization has been recently used to solve the image de-noising problem. However, conventional TV fails to remove staircase artifacts in the reconstructed MR images due to inhomogeneities in field strength and receiver coils. In this abstract, total generalized variation (TGV) regularization is used to de-noise the GRAPPA reconstructed images, while eliminating the limitations posed by TV. Experiments are performed on 8-channel in-vivo human-head data set. The results show that the proposed method successfully removes the noise and preserve fine details in the GRAPPA reconstructed images.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords