Meeting Banner
Abstract #3460

Sparse-Coding Regularized QSM Reconstruction for Suppressing Motion Artifacts

Jingjia Chen1 and Chunlei Liu1,2
1EECS, University of California, Berkeley, Berkeley, CA, United States, 2Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States

Subject motion downgrades QSM image quality and accuracy and can even nullify the image for diagnostic purposes in clinical settings. While QSM plays an emerging role in evaluating neurodegenerative diseases, motion artifact reduction is crucial for its adoption by researchers and clinicians. In this project, we develop a sparse-coding regularized QSM reconstruction algorithm to mitigate motion artifacts and noise. In vivo experiments suggest that the proposed method can alleviate motion artifacts to a certain extent while preserving sharp structures. This regularization technique can be applied jointly with other regularizations to achieve a desired susceptibility map.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords