GROG is an attractive alternative to convolutional gridding and non-uniform DFT methods because of comparatively low cost and no density correction. However, for large multicoil datasets, many fractional matrix powers must be performed which scale with the cube of the number of channels. For SC-GROG and real-time SC-GROG, time and memory requirements can be significantly lowered for precomputation and updates of fractional powers by decomposing required powers into smaller, composable pieces. This is an NP-hard combinatorial change-making problem. We propose a simple solution based on prime factorization which leads to significant computational and memory savings with little performance degradation.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords