Meeting Banner
Abstract #3473

Calibration-free Highly Accelerated Multi-slice MRI via Alternating Phase Encoding Directions and Low-rank Tensor Completion Reconstruction

Yujiao Zhao1,2, Zheyuan Yi1,2,3, Yilong Liu1,2, Fei Chen3, Yanqiu Feng4, and Ed X. Wu1,2
1Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, China, 2Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China, 3Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China, 4School of Biomedical Engineering, Southern Medical University, Guangzhou, China

2D multi-slice MR data share strong correlations in coil sensitivities and image contents over adjacent slices. Here we’ve developed a new acquisition and reconstruction strategy for calibration-free multi-slice MRI. In brief, k-space data for each slice are uniformly undersampled along one phase encoding direction, while undersampled data for next adjacent slice are acquired with phase encoding along an orthogonal direction. Multiple images are then jointly reconstructed using a low-rank Hankel tensor completion approach. This method maximizes the incoherence of aliasing artifacts, and utilizes the coil sensitivity and image content correlations across adjacent slices, leading to high accelerations with uniform undersampling.

This abstract and the presentation materials are available to 2020 meeting attendees and eLibrary customers only; a login is required.

Join Here